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1. Introduction and summary

Superconformal Chern-Simons theories [1] conjectured to describe the low-energy world-

volume dynamics of multiple M2-branes are receiving nowadays considerable attention [2].

Recently Aharony, Bergman, Jafferis and Maldacena (ABJM) proposed a new example of

the AdS/CFT duality which involves the N = 6 superconformal SU(N) × SU(N) Chern-

Simons theory in three dimensions and the M-theory on AdS4×S7/Zk, where k is the level

of the Chern-Simons action [3].

The ABJM model is characterized by two parameters — the rank N of the two gauge

groups SU(N) and the integer level k which is opposite for the gauge groups. Remarkably,

there exists an analogue of the ’t Hooft limit, where N, k → ∞ with the ratio λ = 2π2N/k

kept fixed. In this limit λ becomes continuous allowing therefore for application of standard

perturbative techniques. It turns out that at leading order in the weak coupling expansion

the corresponding dilatation operator can be identified with an integrable Hamiltonian of

the SU(4) spin chain with spins alternating between fundamental and anti-fundamental

representations [4]. The set of emerging Bethe equations admits an extension to the full

superconformal group OSP(2, 2|6).
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According to [3], at strong coupling, i.e. when λ becomes large, the M-theory on

AdS4 × S7/Zk can be effectively described by type IIA superstring theory on the AdS4 ×
CP

3 background. To understand this new example of holography, one needs, therefore,

to determine the spectrum of the corresponding string theory. Obviously, the classical

bosonic string theory can be formulated as a sigma-model on the AdS4 × CP
3 space. This

model is integrable but quantum corrections related to CP
3 are known to spoil its classical

integrability [5]. One may hope, however, that inclusion of type IIA fermions in the full

model would maintain integrability at the quantum level. This is not an easy question to

answer. The presence of the background RR fields sustaining the AdS4 × CP
3 metric [6]

suggests to use the Green-Schwarz formulation for type IIA superstrings. On the other

hand, the complete Green-Schwarz action on AdS4×CP
3 to all orders in fermionic variables

is unknown.1 Even the knowledge of the action alone would be of little use to expose

integrable properties of the corresponding model.

In this paper we propose a novel way to investigate the dynamics of type IIA strings

on AdS4 × CP
3 and, in particular, to reveal its classical integrability. The main idea is to

follow closely the case of type IIB superstrings on AdS5 ×S5, where the coset sigma-model

formulation [8] provides an alternative to the conventional Green-Schwarz approach. The

AdS4 ×CP
3 space is a coset SO(3, 2)/SO(3, 1) × SO(6)/U(3). The group SO(3, 2)× SO(6)

is a bosonic subgroup of the superconformal group OSP(2, 2|6) which naturally suggests

to include fermionic degrees of freedom by considering a sigma-model on the coset space

OSP(2, 2|6)/(SO(3, 1) × U(3)).

A problem one immediately faces with this formulation is that the corresponding coset

space contains 24 real fermions, which is too little in comparison to 32 fermions of the

Green-Schwarz type IIA superstring. On the other hand, because of κ-symmetry only

half of fermions are physical in the latter case. Thus, the sigma-model we propose could

be just a partially κ-symmetry fixed version of the Green-Schwarz type IIA superstring,

where only 8 out of 32 fermions have been gauged away. To justify this interpretation, the

sigma-model in question when supplied with a proper Wess-Zumino term must allow for a

local fermionic symmetry which removes another 8 unphysical fermions. Construction of

κ-symmetry transformations which precisely do this job is one of the results of our paper.

We find that for generic bosonic configurations, i.e. the ones, which involve string

motion in both AdS4 and CP
3 directions, the rank of κ-symmetry variations is 8. There

are, however, “singular” configurations corresponding to string moving in the AdS part

of the coset only. For these configurations the rank of κ-symmetry variations is 12. We

argue that the singular nature of these string backgrounds is due to their incompatibility

with the κ-symmetry gauge choice that has to be made in order to reduce the full-fledged

Green-Schwarz superstring to our coset model.

To get more evidence to our interpretation, we further derive the quadratic fermionic

action arising in the expansion of the full sigma-model action around the point-particle

geodesics and show that it precisely coincides with the one which emerges from Penrose

1In principle, one can obtain the corresponding string action by performing the double dimensional

reduction of the supermembrane action on AdS4 × S7 constructed in [7].
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limit of type IIA superstings on AdS4 × CP
3 [9]–[12].

It should be noted that our sigma-model construction is very close to that for AdS5×S5

superstrings. This allows us to conclude straightforwardly on classical integrability of the

model by exhibiting the same type of the Lax connection as was found for AdS5 × S5

superstring [13]. We also verify that this Lax connection is compatible with κ-symmetry

we found. This opens up the possibility to investigate (partially κ-gauge fixed) strings on

AdS4 × CP
3 by employing the methods built up for the AdS5 × S5 case. In particular,

imposing the uniform light-cone gauge [14, 15] one can develop semiclassical quantization

to verify whether classical integrability is preserved by leading quantum corrections. Then,

the subalgebra su(2|2) of the global symmetry algebra OSP(2, 2|6) which leaves the light-

cone Hamiltonian invariant in the limit of infinite light-cone momentum undergoes a central

extension by the generator P of the world-sheet momentum [16, 17]. Assuming integrability

of the quantum sigma-model, it would be interesting to see to which extend this symmetry

of the light-cone Hamiltonian can be used to fix the form of the scattering matrix. Finite-

gap solutions (including fermionic excitations) [18] could be also investigated with the goal

of reconstructing the data of the string S-matrix undetermined by symmetries, e.g. the

dressing phase [19]. In the AdS5×S5 case the dressing phase satisfies the crossing symmetry

equation [20], which essentially determines its form [21]. It would be also interesting to

understand constraints on the AdS4×CP
3 scattering matrix imposed by crossing symmetry.

The paper is organized as follows. In the next section after a brief introduction to

the Lie algebra osp(2, 2|6) we present the Lagrangian and equations of motion of the coset

model. In section 3 we deduce the corresponding κ-symmetry transformations and analyse

the rank of on-shell κ-symmetry transformations. In section 4 we exhibit the Lax connection

for our model and demonstrate that under κ-variations it retains on-shell zero curvature.

Section 5 is devoted to analysis of the quadratic action for fermions around a null geodesics.

Some technical details are relegated to appendices A and B.

2. Sigma-model Lagrangian

2.1 Coset model and its relation to IIA superstrings

To describe superstrings propagating in the AdS4 × CP
3 background, one may try to de-

velop the corresponding Green-Schwarz formalism [22]. We recall that the Green-Schwarz

superstring involves two Majorana-Weyl fermions of different chirality with the total num-

ber of 32 fermionic degrees of freedom. On the other hand, the Green-Schwarz string action

exhibits a local fermionic symmetry (κ-symmetry), which allows one to remove a half of

them. The remaining 16 fermions are physical and in the light-cone gauge they match

with 8 bosons rendering the space-time supersymmetry manifest. Unfortunately, the ex-

plicit form of the type IIA Green-Schwarz action in an arbitrary background is known up

to quartic terms only [23] and, for this reason, it remains unknown for the AdS4 × CP
3

background. Even if such an action would be found, it would not be straightforward to

reveal its integrable properties. A great advantage of type IIB string theory on AdS5 × S5

is that it admits an alternative description as a coset sigma-model [8] which allows one, in

particular, to prove its classical integrability [13].
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To make a progress in understanding the string dynamics in the AdS4 × CP
3 space-

time, we devise an approach which does not rely on the knowledge of the Green-Schwarz

action. Our starting point is to introduce a sigma-model on the coset space

OSP(2, 2|6)
SO(3, 1) × U(3)

. (2.1)

Recall that the supergroup2 OSP(2, 2|6) has a bosonic subgroup USP(2, 2) × SO(6); the

quotient of the latter over SO(3, 1)×U(3) provides a model of the AdS4 ×CP
3 superspace

with SO(3, 1)×U(3) playing the role of the local Lorentz group. The superspace obtained

in this way is parametrized by 24 (real) fermion degrees of freedom, which is apparently dif-

ferent from both 32 (the gauge unfixed Green-Schwarz superstring) and 16 (the gauge-fixed

Green-Schwarz superstring). We then show that the standard kinetic term can be supple-

mented with the Wess-Zumino term so that the whole action does admit a local fermionic

symmetry much analogous to the usual κ-symmetry of the Green-Schwarz superstring. We

will show that for generic bosonic configurations the κ-symmetry of the coset model allows

one to gauge away precisely 8 fermions, so that the resulting fermionic content match to

that of a κ-symmetry fixed version of the Green-Schwarz superstring. This suggests an

interpretation of the coset sigma-model with 24 fermions as the Green-Schwarz superstring

with a partial fixing of κ-symmetry which consists in removing 8 from 32 fermions.

The construction of the Lagrangian for the sigma-model in question is very similar

to that for classical superstrings on AdS5 × S5 space [8, 24 – 26] and it makes use of the

Z4-grading of the osp(2, 2|6) Lie algebra. We start with recalling the necessary facts about

osp(2, 2|6).

2.2 Superalgebra osp(2, 2|6) and Z4-grading

The Lie algebra osp(2, 2|6) can be realized by 10 × 10 supermatrices of the form

A =

(

X θ

η Y

)

, (2.2)

where X and Y are even (bosonic) 4× 4 and 6× 6 matrices, respectively. The 4× 6 matrix

θ and the 6 × 4 matrix η are odd, i.e. linear in fermionic variables. The matrix A must

satisfy the following two conditions

Ast

(

C4 0

0 I6×6

)

+

(

C4 0

0 I6×6

)

A = 0 ⇒ Ast = −ČAČ−1 , (2.3)

A†

(

Γ0 0

0 − I6×6

)

+

(

Γ0 0

0 − I6×6

)

A = 0 ⇒ A† = −Γ̌AΓ̌−1 . (2.4)

2The standard notation for the supergroup is OSP(6|4). We prefer, however, to use our notation

OSP(2, 2|6) to signify that this supergroup is an isometry group of the AdS4 × CP
3 superspace. This

notation is also in close analogy with PSU(2, 2|4), which is an isometry of the AdS5 × S5 superspace.

– 4 –



J
H
E
P
0
9
(
2
0
0
8
)
1
2
9

Here C4 is the charge conjugation matrix, and Ast denotes the super-transpose matrix

Ast =

(

Xt − ηt

θt Y t

)

. (2.5)

We have also introduced four gamma-matrices Γµ which satisfy the Clifford algebra of

so(3, 1); their explicit form is given in appendix A. Condition (2.3) singles out osp(4|6)
with the bosonic subalgebra sp(4, C)⊕ so(6, C). Eq. (2.4) defines a real section of osp(4|6)
which we denote by osp(2, 2|6).

The charge conjugation matrix can be chosen to be real, skew-symmetric and satisfying

C2
4 = −I, see appendix A for an explicit representation. Conditions (2.3) and (2.4) imply

that the matrices X and Y have the following transposition and reality properties

Xt = −C4XC−1
4 , X∗ = (iΓ3)X(iΓ3)−1 iΓ3 = Γ0C4 , (2.6)

Y t = −Y , Y ∗ = Y , (2.7)

while η and θ obey

η = −θtC4 , θ∗ = iΓ3θ . (2.8)

The algebra osp(4|6) does not admit an outer automorphism of order four [27]. Thus,

we should search for an inner automorphism of order four such that its stationary point

would coincide with the subalgebra so(3, 1) × u(3).

Introduce two 4 × 4 and 6 × 6 matrices K4 and K6, respectively. We require that

K2
4 = −I and K2

6 = −I. In addition, we require (Γµ)t = K4Γ
µK−1

4 for all gamma-matrices.

In what follows it is convenient to make the following choice

K4 = −Γ1Γ2 =











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











, K6 =



















0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0



















. (2.9)

Define a map

Ω(A) =

(

K4X
tK4 K4η

tK6

−K6θ
tK4 K6Y

tK6

)

. (2.10)

For any two supermatrices A and B it satisfies the following property

Ω(AB) = −Ω(B)Ω(A)

and, for this reason, it is an automorphism of osp(4|6), i.e.

Ω([A,B]) = −[Ω(B),Ω(A)] = [Ω(A),Ω(B)] .

– 5 –
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This automorphism is inner. Indeed, using the relations (2.6)–(2.8), we find that

Ω(A) =

(

K4C4 0

0 − K6

)(

X θ

η Y

)(

K4C4 0

0 − K6

)−1

≡ ΥAΥ−1 . (2.11)

Since (K4C4)
2 = I, and K2

6 = −I, the element Υ ∈ OSP(4|6) obeys Υ4 = I. In fact,

the matrix K4C4 coincides with Γ5 given by Γ5 = −iΓ0Γ1Γ2Γ3. Further, we note that

Υ†Γ̌ΥΓ̌−1 = diag(−I4, I6). This means that Ω does not preserve the real form osp(2, 2|6).
The automorphism Ω allows one to endow A = osp(2, 2|6) with the structure of a

Z4-graded algebra, i.e., as the vector space A can be decomposed into a direct sum of four

subspaces

A = A(0) ⊕A(1) ⊕A(2) ⊕A(3) (2.12)

such that [A(k),A(m)] ⊆ A(k+m) modulo Z4. Each subspace A(k) in eq. (2.12) is an

eigenspace of Ω

Ω(A(k)) = ikA(k) . (2.13)

Explicitly, the projection A(k) of a generic element A ∈ osp(2, 2|6) on the subspace A(k) is

constructed as follows

A(k) =
1

4

(

A + i3kΩ(A) + i2kΩ2(A) + ikΩ3(A)
)

. (2.14)

In particular, the stationary subalgebra of Ω is determined by the conditions

[Γ5,X] = 0 , [K6, Y ] = 0 (2.15)

and it coincides with so(3, 1) × u(3), see appendix A for details.

The space A(2) is spanned by matrices satisfying the following condition

Ω(A) = ΥAΥ−1 = −A . (2.16)

As is shown in appendix A, any such matrix satisfies the following remarkable identity

A3 =
1

8
str(ΣA2)A +

1

8
str(A2)ΣA , (2.17)

or, equivalently,

A3 =
1

8
(trA2

AdS + trA2
CP)A +

1

8
(trA2

AdS − trA2
CP)ΣA . (2.18)

Here Σ is a diagonal matrix Σ = Υ2 = (I4,−I6). Equation (2.16) boils down to

{X,Γ5} = 0 , {Y,K6} = 0 . (2.19)

The first equation can be solved as

X = xµΓµ

– 6 –
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and it provides a parametrization of the coset space AdS4 = SO(3, 2)/SO(3, 1) in terms of

four unconstrained variables xµ. Analogously, a general solution to the second equation

in (2.19) gives a parametrization of CP
3

Y = yiTi,

where yi, i = 1, . . . , 6 are six unconstrained variables and the matrices Ti are described in

appendix A.

Finally, for the reader’s convenience we present an explicit form of the projections A(1)

and A(3) of the matrix A:

A(1) =
1

2

(

0 θ − iΓ5θK6

η + iK6η Γ5 0

)

, A(3) =
1

2

(

0 θ + iΓ5θK6

η − iK6η Γ5 0

)

.

Each of these matrices A(1) and A(3) depend on 12 real fermionic variables.

2.3 The Lagrangian

Let g be an element of the coset (2.1) realized as an embedding in the supergroup

OSP(2, 2|6). We use g to build the following current (the one-form)

A = −g−1dg = A(0) + A(2) + A(1) + A(3) . (2.20)

The current takes values in the algebra osp(2, 2|6) and on the r.h.s. of the last formula we

exhibited its Z4-decomposition. By construction A has vanishing curvature:

∂αAβ − ∂βAα − [Aα, Aβ] = 0 . (2.21)

The sigma-model we are looking for is then described by the following action

S = − R2

4πα′

∫

dσdτ L , (2.22)

where R is the radius of the AdS space and the Lagrangian density is the sum of the kinetic

and the Wess-Zumino terms

L = γαβstr
(

A(2)
α A

(2)
β

)

+ κǫαβstr
(

A(1)
α A

(3)
β

)

. (2.23)

Here we use the convention ǫτσ = 1 and γαβ = hαβ
√
−h is the Weyl-invariant combination

of the world-sheet metric hαβ with detγ = −1. The parameter κ in front of the Wess-

Zumino term is kept arbitrary for the moment. As we will see shortly, the requirement of

κ-symmetry leaves two possibilities κ = ±1. We note that the invariant form defined by

means of the supertrace is non-degenerate for the orthosymplectic groups OSP(2n|2n+2).

Equations of motion derived from this Lagrangian read as

∂αΛα − [Aα,Λα] = 0 , (2.24)

where we have introduced the combination

Λα = γαβA
(2)
β − 1

2
κ ǫαβ(A

(1)
β − A

(3)
β ) . (2.25)

– 7 –
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The equations of motion imply the conservation of the Noether current Jα = gΛαg−1

corresponding to the global OSP(2, 2|6) symmetry of the model: ∂αJα = 0.

Single equation (2.24) can be projected on various eigenspaces of the Z4 automorphism.

The projection on the subspace A(0) vanishes. For the projection on A(2) we get

∂α(γαβA
(2)
β ) − γαβ[A(0)

α , A
(2)
β ] +

1

2
κǫαβ

(

[A(1)
α , A

(1)
β ] − [A(3)

α , A
(3)
β ]
)

= 0 , (2.26)

while for projections on A(1,3) one finds

γαβ[A(3)
α , A

(2)
β ] + κǫαβ [A(2)

α , A
(3)
β ] = 0 ,

γαβ[A(1)
α , A

(2)
β ] − κǫαβ [A(2)

α , A
(1)
β ] = 0 .

(2.27)

In deriving these equations we also used the condition of zero curvature for the connection

Aα. Introducing the tensors

Pαβ
± =

1

2
(γαβ ± κǫαβ) , (2.28)

equations (2.27) can be concisely written as

Pαβ
− [A(2)

α , A
(3)
β ] = 0 ,

Pαβ
+ [A(2)

α , A
(1)
β ] = 0 .

(2.29)

These are equations of motion for fermions. Note that for κ = ±1 the tensors P± are

orthogonal projectors:

Pαβ
+ + Pαβ

− = γαβ , Pαδ
± P β

±δ = Pαβ
± , Pαδ

± P β
∓δ = 0 . (2.30)

Finally, we also have equations of motion for the world-sheet metric which are the

Virasoro constraints:

str(A(2)
α A

(2)
β ) − 1

2
γαβγρδstr(A(2)

ρ A
(2)
δ ) = 0 . (2.31)

We stress that so far the construction of the coset sigma-model does not differ from that

for the AdS5 × S5 superstring [8, 24 – 26]. The real problem, however, is to show that the

above action enjoys a local fermionic symmetry which is capable of gauging away precisely

eight fermionic degrees of freedom. This will be the subject of the next section.

3. Local fermionic symmetry

3.1 Deriving κ-symmetry

Kappa-symmetry is a local fermionic symmetry of the Green-Schwarz superstring [22].

It generalizes the local fermionic symmetries first discovered for massive and massless

superparticles [28, 29] and its presence is crucial to ensure the space-time supersymmetry of

the physical spectrum. In this section we establish κ-symmetry transformations associated

with the Lagrangian (2.23).

– 8 –
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The action of the global symmetry group OSP(2, 2|6) is realized on a coset element

by multiplication from the left. In this respect, κ-symmetry transformations can be un-

derstood as the right local action of a fermionic element G = exp ǫ from OSP(2, 2|6) on a

coset representative g [30]:

gG(ǫ) = g′gc , (3.1)

where ǫ ≡ ǫ(τ, σ) is a local fermionic parameter. Here gc is a compensating element from

SO(3, 1) × U(3). The fundamental difference with the case of global symmetry is that for

arbitrary ǫ the action is not invariant under the transformation (3.1). Below we find the

conditions on ǫ which guarantee the invariance of the action.

First we note that under the local multiplication from the right the connection A

transforms as follows

δǫA = −dǫ + [A, ǫ] . (3.2)

The Z4-decomposition of this equation gives

δǫA
(1) = −dǫ(1) + [A(0), ǫ(1)] + [A(2), ǫ(3)] ,

δǫA
(3) = −dǫ(3) + [A(0), ǫ(3)] + [A(2), ǫ(1)] , (3.3)

δǫA
(2) = [A(1), ǫ(1)] + [A(3), ǫ(3)] ,

where we have assumed that ǫ = ǫ(1) + ǫ(3). Using these formulae we find for the variation

of the Lagrangian density

δǫL = δγαβstr
(

A(2)
α A

(2)
β

)

− 2γαβstr
(

[A(1)
α , A

(2)
β ]ǫ(1) + [A(3)

α , A
(2)
β ]ǫ(3)

)

+κǫαβstr
(

∂αA
(3)
β ǫ(1) − ∂αA

(1)
β ǫ(3) + [A(0)

α , ǫ(1)]A
(3)
β + [A(2)

α , ǫ(3)]A
(3)
β

+ A(1)
α [A

(0)
β , ǫ(3)] + A(1)

α [A
(2)
β , ǫ(1)]

)

. (3.4)

Here we used integration by parts to remove the derivatives of ǫ. The variation of the

world-sheet metric is left unspecified. Now we note that the zero curvature condition

eq. (2.21) implies

ǫαβ∂αA
(1)
β = ǫαβ[A(0)

α , A
(1)
β ] + ǫαβ [A(2)

α , A
(3)
β ] ,

ǫαβ∂αA
(3)
β = ǫαβ[A(0)

α , A
(3)
β ] + ǫαβ [A(1)

α , A
(2)
β ] .

Taking this into account, we obtain

δǫL = δγαβstr
(

A(2)
α A

(2)
β

)

− 4 str
(

Pαβ
+ [A

(1)
β , A(2)

α ]ǫ(1) + Pαβ
− [A

(3)
β , A(2)

α ]ǫ(3)
)

.

According to this formula, the variation of the Lagrangian trivially vanishes for field

configurations which solve equations of motion (2.29) and the Virasoro constraints (2.31).

In particular, the variation of the first term is zero due to the identity γαβδγαβ = 0 which

follows from the condition detγ = −1. Of course, under κ-symmetry transformations the

action should remain invariant without using equations of motion.
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In what follows we assume that κ = ±1. For any vector V α we introduce the

projections V α
± :

V α
± = Pαβ

± Vβ

so that the variation of the Lagrangian acquires the form

δǫL = δγαβstr
(

A(2)
α A

(2)
β

)

− 4 str
(

[A
(1),α
+ , A

(2)
α,−]ǫ(1) + [A

(3),α
− , A

(2)
α,+]ǫ(3)

)

.

We further note that from the condition Pαβ
± Aβ,∓ = 0 the components Aτ,± and Aσ,± are

proportional

Aτ,± = −γτσ ∓ κ

γττ
Aσ,± . (3.5)

To simplify our further treatment, we put for the moment ǫ(3) = 0.

The crucial point of our construction is the following ansatz for the κ-symmetry pa-

rameter ǫ(1)

ǫ(1) = A
(2)
α,−A

(2)
β,−καβ

++ + καβ
++A

(2)
α,−A

(2)
β,− + A

(2)
α,−καβ

++A
(2)
β,− − 1

8
str(ΣA

(2)
α,−A

(2)
β,−)καβ

++ , (3.6)

where καβ
++ is the κ-symmetry parameter which is assumed to be independent on the dy-

namical fields of the model. Obviously, καβ
++ must be an element of osp(2, 2|6). Since

on the product of any three supermatrices A,B and C the automorphism Ω acts as

Ω(ABC) = Ω(C)Ω(B)Ω(A), we see that ǫ(1) ∈ A(1) provided καβ
++ is also an element

of degree one: καβ
++ ∈ A(1).

Consider now the commutator

[A
(2)
α,−, ǫ(1)] = A

(2)
α,−A

(2)
β,−A

(2)
δ,−κβδ

++ + A
(2)
α,−κβδ

++A
(2)
β,−A

(2)
δ,− + A

(2)
α,−A

(2)
β,−κβδ

++A
(2)
δ,−

−A
(2)
β,−A

(2)
δ,−κβδ

++A
(2)
α,− − κβδ

++A
(2)
β,−A

(2)
δ,−A

(2)
α,− − A

(2)
β,−κβδ

++A
(2)
δ,−A

(2)
α,−

−1

8
str(ΣA

(2)
β,−A

(2)
δ,−)A

(2)
α,−κβδ

++ +
1

8
str(ΣA

(2)
β,−A

(2)
δ,−)κβδ

++A
(2)
α,− . (3.7)

Here we have to deal with tensorial structures

A
(2)
α,− . . . A

(2)
β,− . . . A

(2)
δ,− ,

where dots indicate insertions of other supermatrices, e.g., κ++. Since A
(2)
α,− is an (anti-

)self-dual form, the tensors above are totally symmetric in indices α, β, δ and have, in fact,

a single non-trivial entry, all the other entries being proportional to it. Thus, most of the

terms in eq. (3.7) are cancelled out and we are left with

[A
(2)
α,−, ǫ(1)] =

[

A
(2)
α,−A

(2)
β,−A

(2)
δ,− − 1

8
str(ΣA

(2)
β,−A

(2)
δ,−)A

(2)
α,−, κβδ

++

]

. (3.8)

Now we invoke the identity (2.18) satisfied by any element A ∈ A(2), according to which

A
(2)
α,−A

(2)
β,−A

(2)
δ,− − 1

8
str(ΣA

(2)
β,−A

(2)
δ,−)A

(2)
α,− =

1

8
str(A

(2)
β,−A

(2)
δ,−)ΣA

(2)
α,− .
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Thus, we have found that

[A
(2)
α,−, ǫ(1)] =

1

8
str(A

(2)
β,−A

(2)
δ,−)[ΣA

(2)
α,−, κβδ

++] . (3.9)

Now we see that the κ-symmetry variation of the action

δǫL = δγαβstr
(

A(2)
α A

(2)
β

)

− 4 str
(

[A
(1),α
+ , A

(2)
α,−]ǫ(1)

)

(3.10)

implies then the following transformation law for the two-dimensional metric

δγαβ =
1

2
str
(

ΣA
(2)
δ,−[καβ

++, A
(1),δ
+ ]

)

. (3.11)

Notice that the condition γαβδγαβ is automatically obeyed because

γαβδγαβ = γαβP+
αδP

+
βηκ

δη = 0 .

Using the fact that the matrix Σ anti-commutes with any fermionic matrix, we can rewrite

the κ-variation of the metric as

δγαβ =
1

2
str
(

Σκαβ
++{A

(1),δ
+ , A

(2)
δ,−}

)

. (3.12)

We see that in a certain sense the variation occurs in the direction orthogonal to the

fermionic equations of motion which are [A
(1),δ
+ , A

(2)
δ,−] = 0.

It is obvious that the treatment above can be repeated for the variation involving ǫ(3),

so that a complete variation of the metric under κ-symmetry will be of the form

δγαβ =
1

2
str
(

ΣA
(2)
δ,−[καβ

++, A
(1),δ
+ ]

)

+
1

2
str
(

ΣA
(2)
δ,+[καβ

−−, A
(3),δ
− ]

)

, (3.13)

where κ
αβ
−− ⊂ A(3) is another independent κ-symmetry parameter.

We would like to point out that in our derivation of κ-symmetry we used the fact that

Pαβ
± are orthogonal projectors and, therefore, realization of the κ-symmetry requires the

parameter κ in the Lagrangian to be equal to ±1.

3.2 Rank of κ-symmetry transformations on-shell

The next important question is to understand how many fermionic degrees of freedom can

be gauged away on-shell by means of κ-symmetry. To this end one can make use of the

light-cone gauge. Generically, the light-cone coordinates X± are introduced by making

linear combinations of one field corresponding to the time direction from AdS4 and one

field from CP
3. Without loss of generality we can assume that the transversal fluctuation

are all suppressed and the corresponding element A(2) has the form

A(2) =

(

ixΓ0 0

0 yT6

)

. (3.14)

Indeed, the matrix Γ0 corresponds to the time direction in AdS4 and any element from

the tangent space to CP
3 can be brought to T6 by means of an so(6) transformation. The

– 11 –
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Virasoro constraint str(A
(2)
α,−A

(2)
β,−) = 0 then demands that x2 = y2, i.e. x = ±y. Picking

up, e.g., the first solution x = y, we then compute the element ǫ(1) assuming a generic

parameter κ, which depends on 12 independent fermionic variables.3 First, we see that

str(ΣA(2)A(2)) = −8x2. Second, plugging eq. (3.14) into eq. (3.6), we obtain

ǫ(1) = x2

(

0 ε

−εtC4 0

)

, (3.15)

where ε is the following matrix

ε =











0 0 i(ik13 − k16) i(ik14 − k15) ik14 − k15 ik13 − k16

0 0 i(ik23 − k26) i(ik24 − k26) ik24 − k25 ik23 − k26

0 0 − i(−ik33 − k36) − i(−ik34 − k35) − ik34 − k35 − ik33 − k36

0 0 − i(−ik43 − k46) − i(−ik44 − k45) − ik44 − k45 − ik43 − k46











and κij ≡ κ++,ij are the entries of the matrix κ++. As we see, the matrix ε depends

on 8 independent complex fermionic parameters (e.g. the last two columns). The reality

condition (2.8) for ε reduces this number by half. Finally, ǫ(1) must belong to the component

A(1) which further reduce the number of fermions by half. As the result, ǫ(1) depends on

four real fermionic parameters. A similar analysis shows that ǫ(3) will also depend on four

real fermions. Thus, in total ǫ(1) and ǫ(3) depend on 8 real fermions and these are those

degrees of freedom which can be gauged away by κ-symmetry. The gauge-fixed coset model

will therefore involve 16 physical fermions only.

It should be noted that the considerations above are applicable to a generic case, where

string motion occurs in both AdS4 and CP
3 spaces. There is however a singular situation,

when string moves in the AdS space only (e.g. the string spinning in AdS3 [31]). One can

show that for this case the transformation (3.6) vanishes, although the fermionic equations

remain degenerate and only 12 of them (out of 24) are independent. This suggests that real-

ization of κ-symmetry changes in this singular situation and κ-symmetry becomes capable

of gauging away 12 from 24 fermions. A singular nature of the corresponding bosonic back-

ground shows up in the fact that as soon as fluctuations along CP
3 directions are switched

on, the rank of κ-symmetry gets reduced to 8. As the result, singular backgrounds cannot

be quantized semi-classically within the coset sigma-model. This picture is rather different

from that for conventional type IIA or IIB superstrings. There κ-symmetry can always

remove half of fermionic degrees of freedom. Which half however, does depend on a chosen

bosonic background. As was already explained above, we would like to treat our coset

model as the one which originates from the type IIA superstring on AdS4 × CP
3 upon a

partial κ-symmetry fixing. The trouble with singular (AdS) backgrounds we observe here

could be, therefore, due to their incompatibility with the κ-symmetry gauge choice which

reduces type IIA superstring on AdS4 ×CP
3 to our coset model. It would be important to

further clarify this issue.

3The matrix κ++ depends on 12 fermionic variables only, because it is an element of A(1).
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4. Integrability

Since there is no difference in construction of the Lagrangian in comparison to the case of

AdS5×S5, the Lax connection found in [13] for superstrings on AdS5×S5 is applicable to our

model as well and, therefore, we can straightforwardly conclude its kinematical integrability.

The main result of this section consists in showing that under κ-symmetry variations found

in the previous section the Lax connection undergoes a gauge transformation on-shell. This

provides another non-trivial check that κ-symmetry transforms solution of the equations

of motion into solutions.

4.1 Lax connection

The Lax representation of the superstring equations of motion on AdS5×S5 has been found

in [13]. The corresponding two-dimensional Lax connection Lα has the following structure

Lα = ℓ0A
(0)
α + ℓ1A

(2)
α + ℓ2γαβǫβρA(2)

ρ + ℓ3A
(1)
α + ℓ4A

(3)
α , (4.1)

where ℓi are some constants.

The connection L is required to have zero curvature as a consequence of the dynamical

equations and the flatness of Aα. This requirement allows one to determine the constants

ℓi. For the reader’s convenience below we summarize the result for ℓi.

All the parameters ℓi are determined in terms of ℓ1:

ℓ2
3 = ℓ1 ±

√

ℓ2
1 − 1 , ℓ2

4 = ℓ1 ∓
√

ℓ2
1 − 1 , ℓ2 = ±

√

ℓ2
1 − 1 , ℓ0 = 1 . (4.2)

The signs in these formulae correlate with the corresponding sign of κ which is also required

to satisfy the condition κ2 = 1. It is convenient to describe all the coefficients in terms of

uniformizing spectral parameter z. We parametrize

ℓ1 =
1 + z2

1 − z2
.

For the remaining coefficients ℓi the complete set of solutions reads as follows

ℓ2 = s1
2z

1 − z2
, ℓ3 = s2

1 + s2s3z√
1 − z2

, ℓ4 = s2
1 − s2s3z√

1 − z2
, (4.3)

Here s2
2 = s2

3 = 1 and s1s2s3 = −sign κ. Thus, for every choice of κ we have four different

solutions for ℓi specified by the choice of s2 = ±1 and s3 = ±1. The spectral parameter z

takes values in the complex plane and, for this reason, the Lax connection takes values in

the complexified algebra osp(4|6).
Finally, we point out how the grading map Ω acts on the Lax connection Lα. Since Ω

is the automorphism of osp(2, 2|6) the curvature of Ω(Lα) also vanishes. It can be easily

checked that Ω(Lα) is related to Lα by a certain diffeomorphism of the spectral parameter,

namely,

Ω(Lα(z)) = ΥLα(z)Υ−1 = Lα(1/z) .

In summary, equations of motion admit the same zero-curvature representation as for

superstring on AdS5 × S5 which ensures the kinematical integrability of our coset model.

Inclusion of the Wess-Zumino term is allowed by integrability only for κ = ±1, i.e. only for

those values of κ for which the model has the local fermionic symmetry.
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4.2 κ-variations of the Lax connection

In this section we analyse the relationship between the Lax connection and κ-symmetry.

By using the formulae (3.3) which describe how the Z4-components of A = −g−1dg

transform under the κ-symmetry, it is straightforward to find the κ-symmetry variation of

the Lax connection

δLα = [Lα,Λ] − ∂αΛ + ℓ2ℓ3ǫαβ[A
(2),β
− , ǫ(1)] + ℓ2ǫαβ

(

2[A
(1),β
+ , ǫ(1)] + δγβδA

(2)
δ

)

, (4.4)

where Λ = ℓ3ǫ
(1). The last two terms proportional to ℓ2ℓ3 and ℓ2 would destroy the

zero curvature condition for the κ-transformed connection unless they separately vanish.

Concerning the first term, as we have shown in the previous section,

[A
(2)
α,−, ǫ(1)] =

1

8
str(A

(2)
β,−A

(2)
δ,−)[ΣA

(2)
α,−, κβδ

++] , (4.5)

so that this term vanishes due to the Virasoro constraints:

str(A
(2)
α,−A

(2)
β,−) = 0 .

As to the second term, by using equations of motion for fermions the relevant commutator

can be written as follows

[A
(1),β
+ , ǫ(1)] = A

(2)
α,−A

(2)
β,−[A

(1),β
+ , καβ

++] + [A
(1),β
+ , καβ

++]A
(2)
α,−A

(2)
β,−

+A
(2)
α,−[A

(1),β
+ , καβ

++]A
(2)
β,− − 1

8
str(ΣA

(2)
α,−A

(2)
β,−)[A

(1),β
+ , καβ

++] . (4.6)

We assume a parametrization

A(2) =

(

yµΓµ 0

0 ȳiTi

)

, [A
(1),β
+ , καβ

++] =

(

uµΓµ 0

0 ūiTi

)

(4.7)

and, therefore, 1
8 str(ΣA

(2)
α,−A

(2)
β,−) = 1

2 (y2 − ȳ2), while the Virasoro constraint is

str(A
(2)
α,−A

(2)
β,−) = 4(y2 + ȳ2) = 0 =⇒ y2 = −ȳ2 . (4.8)

With this parametrization at hand, the r.h.s of eq. (4.6) boils down to the following matrix

expression

[A
(1),β
+ , ǫ(1)] =





yµyνuρ

(

ΓµΓνΓρ+ΓµΓρΓν + ΓρΓµΓν
)

0

0 ȳiȳjūk

(

TiTjTk+TiTkTj+TkTiTj

)





−1

2
(y2 − ȳ2)

(

uµΓµ 0

0 ūiTi

)

.

The Clifford algebra for the gamma-matrices together with the permutation properties for

Ti’s allows one to rewrite the above formula as

[A
(1),β
+ , ǫ(1)] =

(

y2uµΓµ+2(yu)yµΓµ 0

0 −ȳ2ūiTi−2(ȳū)ȳiTi

)

− 1

2
(y2−ȳ2)

(

uµΓµ 0

0 ūiTi

)

,
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where we defined (yu) ≡ yµuνηµν and (ȳū) ≡ ȳiūi. Taking into account the Virasoro

constraints, the last expression simplifies to

[A
(1),β
+ , ǫ(1)] =

(

2(yu) yµΓµ 0

0 −2(ȳū) ȳiTi

)

. (4.9)

We also notice that due to the fermion equations of motion the products (yu) and (ȳū)

are not independent. Indeed, on-shell we have

0 = str([A
(1),α
+ , ǫ(1)]A

(2)
α,−) = 8(y2(yu) − ȳ2

(

ȳū)
)

. (4.10)

The Virasoro constraints (4.8) then imply that

(yu) = −(ȳū) . (4.11)

On the other hand,

δγβδA
(2)
δ = −2((yu) − (ȳū))

(

yµΓµ 0

0 ȳiTi

)

= −4(yu)

(

yµΓµ 0

0 ȳiTi

)

. (4.12)

Thus,

2[A
(1),β
+ , ǫ(1)] + δγβδA

(2)
δ = 0 , (4.13)

i.e. a κ-symmetry variation of the Lax connection is a gauge transformation on-shell.

5. Plane-wave limit

In this section we discuss the perturbative expansion of the string sigma model action

up to the quadratic order in the bosonic and fermionic fields around a point-like string

solution describing a massless particle moving in CP
3 along a null geodesic given by the

equations w1 = w2 = 0 , w3 = eiφ. The reader should consult appendix B for notations

and parametrizations of CP
3 used in the paper. The expansion corresponds to taking a

Penrose or plane-wave limit of the background AdS4 × CP
3 geometry which was recently

discussed in [11, 12]. The resulting type IIA string theory pp-wave background has 24

supersymmetries, and the corresponding light-cone gauge Green-Schwarz action describes

8 massive bosons and 8 massive fermions, and was constructed in [9, 10]. We use the sigma

model action (2.22) to compute the quadratic action, then we impose a certain κ-symmetry

gauge condition and show that the light-cone gauge action coincides with the one in [9, 10].

We consider this computation as a first nontrivial check of our coset sigma model action

for superstrings on AdS4 × CP
3.

To find a reasonably good expansion around the geodesics, it is convenient to use

the homogeneous coordinates zi of CP
3. Then one can see that the parametrization of

zi which leads to a simple bosonic quadratic action describing massive excitations can be

chosen as follows

z4 = e−iφ/2 , z3 = (1 − x4)e
iφ/2 , z1 =

1√
2
y1 , z2 =

1√
2
y2 ,
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where the angle φ parametrizes the geodesics, and the complex coordinates y1, y2 and

the real coordinate x4 denote the five physical fluctuations in CP
3. In terms of the

inhomogeneous coordinates wi the parametrization has the form

w3 = (1 − x4)e
iφ , w1 =

1√
2
y1e

iφ/2 , w2 =
1√
2
y2e

iφ/2 ,

and all the coordinates wi depend on φ.

Then, expanding the CP
3 metric (B.11) in powers of x4, y1, y2, one finds

4 ds2

CP3
= dφ2

(

1 − x2
4 −

1

4
ȳryr

)

+ dx2
4 + dȳrdyr + · · · , r = 1, 2 .

This formula should be combined with the standard expansion of the AdS4 metric, see

e.g. [14] for a convenient parametrization of AdSd

ds2
AdS4

= −dt2(1 + x2
i ) + dx2

i + · · · , i = 1, 2, 3 ,

where t is the global time coordinate, and xi are three physical fluctuations in AdS4.

Thus, the AdS4 × CP
3 background metric admits the following expansion

ds2
AdS4×CP3

= −dt2(1 + x2
i ) + dx2

i + dφ2

(

1 − x2
4 −

1

4
ȳryr

)

+ dx2
4 + dȳrdyr + · · · . (5.1)

It is clear now that plugging in the point-like string solution with t = τ , φ = τ in the

corresponding string Lagrangian (2.23) one gets four massive fields of mass 1/2 and four

fields of mass 1. Note that the field x4 from CP
3 joins the three fields from AdS4. It is

unclear at the moment if it is a consequence of the supersymmetry or an artifact of the

plane-wave expansion and sigma-model loop corrections would result in a mass splitting.

To find the quadratic fermion action in the background, we need to know the coset

representative corresponding to the point-like string solution. Since for the solution w1 =

w2 = 0 , w3 = eiφ, it is given by

gB =

(

g
AdS

0

0 g
CP

)

, g
AdS

= eitΓ0/2 , (5.2)

g
CP

= I +
eiφT3 + e−iφT 3√

2
+

(

1 − 1√
2

)

(T3T 3 + T 3T3) , (5.3)

where we use (B.8), and take into account that the time direction corresponds to Γ0.

Then we build up the group element in the form

g = g(χ) gB (5.4)

and compute the quadratic part of the fermion Lagrangian (2.23). In the last formula

g(χ) = exp χ, where χ is a generic odd element of osp(2, 2|6).
One can check that the coset representative g

CP
(5.3) does not correspond to any one-

parameter subgroup of SO(6) because the tangent element to g
CP

has an explicit dependence
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on φ. For this reason it seems easier to parametrize the coset manifolds AdS4 and CP
3 by

the following group elements

G = diag(G
AdS

, G
CP

) , G
AdS

= g
AdS

K4 gt
AdS

, G
CP

= g
CP

K6 gt
CP

. (5.5)

Indeed, as was shown in [32], the sigma model string Lagrangian of the form (2.23) can be

rewritten in terms of these elements as follows

L =
1

4
str
[

γαβ(Bα + GBt
αG−1 + ∂αGG−1)(Bβ + GBt

βG−1 + ∂βGG−1)

+ 2iκǫαβFαGFst
β G−1

]

, (5.6)

where F and B are odd and even superalgebra elements made of fermions only

g−1(χ)dg(χ) = F + B , F = dχ + · · · , B =
1

2
dχχ − 1

2
χdχ + · · · . (5.7)

The coset group elements are skew-symmetric matrices Gt = −G, and, therefore, AdS4

can be identified with the intersection of 4 × 4 skew-symmetric matrices with USP(2,2)

ones, and CP
3 with the intersection of 6 × 6 skew-symmetric and orthogonal matrices.

The parametrizations (5.4) of the supergroup elements and (5.5) of the coset manifolds are

distinguished because the bosonic subgroup of OSP(2, 2|6) acts on the coset representatives

g(χ) and G by the usual matrix conjugation [33].

The string Lagrangian (5.6) can be further simplified by taking into account that

str
(

GBt
αG−1∂βGG−1

)

= str
(

Bα∂βGG−1
)

,

and, therefore, we can bring (5.6) to the following simple form

L =
1

4
str
[

γαβ(∂αGG−1∂βGG−1 + 4Bα∂βGG−1 + 2BαBβ + 2BαGBt
βG−1)

+2iκ ǫαβFαGFst
β G−1

]

. (5.8)

The first term in the expression gives the bosonic part of the string Lagrangian determined

by the background metric. According to formula (5.1), the corresponding action expanded

around the particle trajectory t = τ , φ = τ takes the following form

S
(2)
B = − R2

4πα′

∫ J

0
dσdτ

(

∂αxk∂αxk − x2
k + ∂αȳr∂αyr −

1

4
ȳryr

)

, (5.9)

where k = 1, 2, 3, 4, the integration limit J is determined by the charge (or target space-

time energy) carried by the particle: E = J = R2

2πα′J , and we dropped the unessential

fluctuations in the time and φ directions.

The quadratic fermion action in the particle background is given by the sum of the

second and fifth terms in (5.8)

L
(2)
F = str

[

γαβBα∂βGG−1 +
i

2
κǫαβFαGFst

β G−1

]

, (5.10)
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where

F = dχ , B =
1

2
dχχ − 1

2
χdχ , (5.11)

and G is given by (5.5), (5.2) and (5.3) with t = φ = τ .

Then, one can show that G
CP

with g
CP

given by eq. (5.3) admits the following simple

representation

G
CP

= g
CP

K6 gt
CP

= (I + eiφT3 + e−iφT 3 + T3T 3 + T 3T3)K6 = h(φ)K6 h(φ)t ,

where

h(φ) = e−φT56e
π
2
T35 , Tij = Eij − Eji .

Therefore, we can redefine the fermions and bosons as

G → HGHt , χ → H χH−1 , H = diag(g
AdS

(t), h(φ)) ,

and remove the explicit dependence of t and φ from the Lagrangian leaving only the

dependence of their derivatives. One can easily see that the redefinition amounts to the

following replacement in the terms F and B of the Lagrangian (5.10)

dχ → Dχ = dχ + [dh , χ] ,

where

dh = H−1dH = diag(dh
AdS

, dh
CP

) = diag

(

i

2
Γ0dt , T36 dφ

)

,

and the transformed G is just the constant matrix G = K = diag(K4,K6), and

dGG−1 = dh − KdhtK = diag(iΓ0dt , (T36 + KT36K) dφ) = diag(iΓ0dt , T6 dφ) .

Taking into account that if all bosonic fluctuations vanish then the world-sheet metric

is flat, we conclude that the quadratic fermion Lagrangian (5.10) is equal to

L
(2)
F = str

[

B0∂0GG−1 − iκF0K∂1χ
stK−1

]

(5.12)

= str

[

1

2
(∂0χχ − χ∂0χ)(iΓ0 + T6)) + iκ

[

i

2
Γ0 + T36 , χ

]

K∂1χ
stK

+
1

2

((

i

2
Γ0+T36

)

χ2+χ2

(

i

2
Γ0+T36

)

−2χ

(

i

2
Γ0+T36

)

χ

)

(iΓ0+T6)

]

,

where we use the obvious embedding of the matrices Γ0 , T6 , T36 into osp(2, 2|6).
The Lagrangian (5.12) is invariant under κ-symmetry transformations discussed in

section 3. The symmetry allows one to impose the gauge-fixing condition

χT56 = 0 , (5.13)

which implies that the last two columns of θ and last two rows of η vanish leaving only 16

physical fermion degrees of freedom.
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Then one can easily check that due to the gauge fixing str (∂0χχ − χ∂0χ)T6 = 0 , and

str [T36 , χ]K∂1χ
stK = 0. Hence, the kinetic term in eq. (5.12) becomes non-degenerate

and equal to

str

[

1

2
(∂0χχ − χ∂0χ)(iΓ0 + T6))

]

= −i tr ηΓ0θ̇ = i tr θtC4Γ
0θ̇ = tr θtΓ3θ̇ ,

and the σ-derivative term is given by

str

(

iκ

[

i

2
Γ0 , χ

]

K∂1χ
stK

)

= κ tr θt Γ0 K4 θ′ K6 .

Computing the mass term, we get

str

[

1

2

((

i

2
Γ0 + T36

)

χ2 + χ2

(

i

2
Γ0 + T36

)

− 2χ

(

i

2
Γ0 + T36

)

χ

)

(iΓ0 + T6)

]

= −1

2
tr
[

θtC4θ(I − {T6, T36})
]

.

Finally, introducing a fermion 4 by 4 matrix ϑ made of nonvanishing entries of θ we can

write the quadratic Lagrangian in the form (with κ = 1)

L
(2)
F = tr

(

ϑtΓ3ϑ̇ + ϑt Γ0 K4 ϑ′ K4 −
1

2
ϑtC4ϑD4

)

, (5.14)

where D4 = diag(1, 1, 3, 1) is the restriction of I − {T6, T36} to the first four entries.

Computing the spectrum, one finds that the Lagrangian (5.14) describes eight fermions

with frequencies ωp =
√

p2 + 1
4 , four fermions with frequencies ωp = −1

2 +
√

p2 + 1, and

four fermions with frequencies ωp = 1
2 +

√

p2 + 1. It is clear from the spectrum that the

fermion Lagrangian (5.14) describes eight fermions of mass 1/2 and eight fermions of mass

1 because the constants ±1/2 in the last eight frequencies can be removed by a time-

dependent redefinition of the corresponding fermions. In fact, the time dependence reflects

the fact that some of the fermions are still charged with respect to the U(1) subgroup that

generates the shifts of the angle variable φ.

It is easy to guess that the right fermion spectrum, i.e. the one without any constant

shifts by ±1/2 in the frequencies, is obtained from eq. (5.14) by replacing D4 by the matrix

diag(1, 1, 2, 2) which is the restriction of I − T 2
6 to the first four entries. This replacement

is just a subtraction of the matrix diag(I2, σ3) from D4, and this suggests to represent the

fermion ϑ in the following block form

ϑ =

(

ϑ1 ζ1

ϑ2 ζ2

)

,

where ϑi , ζi are 2 × 2 fermion matrices which satisfy the following hermiticity conditions

ϑ†
1 = iϑt

2σ2 , ϑ†
2 = −iϑt

1σ2 , ζ†1 = iζt
2σ2 , ζ†2 = −iζt

1σ2 , (5.15)

where σi are the Pauli matrices. Computing the Lagrangian (5.14), one finds

L
(2)
F = tr

(

2ϑt
2σ2ϑ̇1 − ϑt

1σ2ϑ
′
1σ2 + ϑt

2σ2ϑ
′
2σ2 − iϑt

2σ2ϑ1 (5.16)

+ 2ζt
2σ2ζ̇1 − ζt

1σ2ζ
′
1σ2 + ζt

2σ2ζ
′
2σ2 − 2iζt

2σ2ζ1 − iζt
2σ2ζ1σ3

)

.
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It is now clear that the last term in (5.16) can be removed by the following fermion

redefinition

ζ1 → ζ1e
iτσ3/2 , ζ2 → ζ2e

−iτσ3/2 , (5.17)

and the first and the second lines (without the last term) of eq. (5.16) describe eight

fermions of mass 1/2 and eight fermions of mass 1, respectively.

The sum of the quadratic bosonic and fermionic actions coincides with the light-cone

Green-Schwarz action for type IIA superstrings on the pp-wave background with 24 super-

symmetries constructed in [9, 10].
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A. Gamma- and T-matrices

Introduce the following matrices

Γ0 =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, Γ1 =











0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0











,

Γ2 =











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











, Γ3 =











0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0











,

(A.1)

These matrices satisfy the Clifford algebra {Γµ,Γν} = 2ηµν , where ηµν is Minkowski

metric with signature (1,−1,−1,−1). We also define Γ5 = −iΓ0Γ1Γ2Γ3 with the property

(Γ5)2 = I.

The charge conjugation matrix C4 obeys (Γµ)t = −C4Γ
µC−1

4 and in the present case

it can be chosen as

C4 = iΓ0Γ3 =











0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0











. (A.2)
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The Lie algebra so(3, 2) is generated by the generators Mab = −M ba with a, b =

0, . . . , 4 obeying the following relations

[Mab,M cd] = η̄bcMad − η̄acM bd − η̄bdMac + η̄adM bc ,

where η̄ = diag(1,−1,−1,−1, 1). These generators have the following representation by

4 × 4 matrices Mµν = 1
4 [Γµ,Γν ] ≡ Γµν and Mµ4 = i

2Γµ. Such an identification provides

an isomorphism so(3, 2) ∼ usp(2, 2) because in this representation (Mab)†Γ0 + Γ0Mab = 0.

The matrices Γµν generate the Lie algebra so(3, 1) and they all commute with Γ5. Finally,

iΓµ span a space of solutions to the equation Ω(A) = −A for A restricted to usp(2, 2).

The stationary subalgebra of the automorphism Ω restricted to the so(6) component

is determined by the condition

[K6, Y ] = 0 , Y ∈ so(6).

The solution to this equation can be parametrized as follows

Y =



















0 y12 y24 −y23 y26 −y25

−y12 0 y23 y24 y25 y26

−y24 −y23 0 y34 y46 −y45

y23 −y24 −y34 0 y45 y46

−y26 −y25 −y46 −y45 0 y56

y25 −y26 y45 −y46 −y56 0



















. (A.3)

This is a 9-parametric solution which describes an embedding of the u(3) ⊂ so(6).

The space orthogonal to u(3) in so(6) is spanned by solutions to the following equation

K6Y = −Y K6 (A.4)

and it provides a parametrization of the coset space CP
3. The general solution to eq. (A.4)

is six-parametric and is represented by a matrix

Y =



















0 0 y1 y2 y3 y4

0 0 y2 −y1 y4 −y3

−y1 −y2 0 0 y5 y6

−y2 y1 0 0 y6 −y5

−y3 −y4 −y5 −y6 0 0

−y4 y3 −y6 y5 0 0



















≡ yiTi . (A.5)

Here we have introduced the six matrices Ti which are Lie algebra generators of so(6) along

the CP
3 directions:

T1 = E13 − E31 − E24 + E42 , T2 = E14 − E41 + E23 − E32 ,

T3 = E15 − E51 − E26 + E62 , T4 = E16 − E61 + E25 − E52 ,

T5 = E35 − E53 − E46 + E64 , T6 = E36 − E63 + E45 − E54 ,

(A.6)

where Eij are the standard matrix unities. The matrices Ti are normalized as follows

tr(TiTj) = −4δij . (A.7)
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The matrices [Ti, Tj ] commute with K6 and they are skew-symmetric.4 Only 9 of them

are independent and they are the generators of u(3) inside so(6).

Quite remarkably, the matrix (A.5) obeys the following identity

Y 3 = −ρ2Y , ρ2 =

6
∑

i=1

y2
i . (A.8)

A Lie algebra element parametrizing the coset AdS4 × CP
3 is therefore represented in the

form

A =

(

xµΓµ 0

0 Y

)

, Y = yiTi . (A.9)

Thus,

A2 =

(

x2
I 0

0 Y 2

)

, A3 =

(

x2xµΓµ 0

0 Y 3

)

=

(

x2xµΓµ 0

0 − ρ2Y

)

,

where x2 = xµxνη
µν . Obviously,

strA2 = 4x2 + 4y2 , strΣA2 = 4x2 − 4y2 (A.10)

and as the result we find the following characteristic equation

A3 =
1

8
str(ΣA2)A +

1

8
str(A2)ΣA , (A.11)

for a matrix Lie algebra element A parametrizing the space AdS4 × CP
3.

B. Parametrizations of CP
3

An SO(6) matrix parametrizing the coset space SO(6)/U(3), and therefore CP
3, can be

obtained by exponentiating the generic element (A.5). The matrix exponent can be easily

computed by using the identity (A.8), and gives a generic representative of the coset in the

following form

g = eY = I +
sin ρ

ρ
Y +

1 − cos ρ

ρ2
Y 2 . (B.1)

4The anti-commutators {Ti, Tj} commute with K6 as well. As the consequence, all Tij are symmetric.

Not all the matrices {Ti, Tj} are independent. In particular,

{T1, T2} = 0 , {T3, T4} = 0 , {T5, T6} = 0

which can be verified by a direct calculation. From the remaining matrices {Ti, Tj} only six are independent.

One can choose, for instance,

{T1, T4} , {T2, T4} , {T1, T6} , {T2, T6} , {T3, T6} , {T4, T6} .
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The formula (B.1) suggests to parametrize CP
3 by means of the spherical coordinates

y1 + iy2 = ρ sin θ cos
α1

2
e

i
2
(α2+α3)+iφ , (B.2)

y3 + iy4 = ρ sin θ sin
α1

2
e−

i
2
(α2−α3)+iφ ,

y5 + iy6 = ρ cos θ eiφ .

This provides an explicit parametrization of CP
3 which can be used to find the Fubini-Study

metric on CP
3. To this end, by noting that K6g = g−1K6 we first compute

−2A(2) = g−1dg + K6g
−1dgK6 = g−1dg + dgg−1 .

Then, the Fubini-Study metric on CP
3 is given by the following formula

ds2

CP3
= −1

4
tr
(

A(2)
)2

=
1

8
tr
(

dgdgt − gtgtdgdg
)

=
1

16
tr
(

d(g2)d(g2)t
)

(B.3)

= dρ2 +
1

4
sin2 2ρ

(

dφ +
1

2
sin2 θ (dα3 + dα2 cos α1)

)2

+ sin2 ρ ds2

CP2
,

where

ds2

CP2
= dθ2 +

1

4
sin2 θ

(

dα2
1 + sin2 α1dα2

2 + cos2 θ (dα3 + cos α1 dα2)
2
)

is the Fubini-Study metric on CP
2.

Note also that CP
3 can be also parametrized by means of the following matrices

G = gK6g
t = g2K6 , Gt = −G , GGt = I , (B.4)

and therefore CP
3 can be identified with the intersection of skew-symmetric and orthogonal

matrices. In terms of the matrix G the Fubini-Study metric on CP
3 is given by the following

simple formula

ds2

CP3
=

1

16
tr dGdGt . (B.5)

It is well known that the Fubini-Study metric on CP
3 can be also written in the form

ds2
CP3

=
dw̄idwi

1 + |w|2 − dw̄iwiw̄jdwj

(1 + |w|2)2 , |w|2 = w̄kwk . (B.6)

The three complex inhomogeneous coordinates wi are related to the six real coordinates yi

as follows

sin ρ=
|w|

√

1+|w|2
, cos ρ=

1
√

1+|w|2
, sin 2ρ=

2|w|
1+|w|2 , 1−cos 2ρ=

2|w|2
1+|w|2 ,

|w|
ρ

(y1+iy2)=w1 ,
|w|
ρ

(y3+iy4)=w2 ,
|w|
ρ

(y5+iy6)=w3 . (B.7)

Then, the coset representative g takes the form

g = I +
1

√

1 + |w|2
(W + W ) +

√

1 + |w|2 − 1

|w|2
√

1 + |w|2
(WW + WW ) , (B.8)
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where

W = wiTi , T1 =
1

2
(T1 − iT2) , T2 =

1

2
(T3 − iT4) , T3 =

1

2
(T5 − iT6) ,

W = w̄iT i , T 1 =
1

2
(T1 + iT2) , T 2 =

1

2
(T3 + iT4) , T 3 =

1

2
(T5 + iT6) ,

(B.9)

and we took into account that W 2 = 0 for any set of wi. Computing g2 we get the following

simple formula

g2 = I +
2

1 + |w|2 (W + W ) +
2

1 + |w|2 (WW + WW ) , (B.10)

which can be used to find G and verify (B.6).

The CP
3 metric can be written in terms of the four homogeneous coordinates za

ds2

CP3
=

dz̄adza

z̄czc
− dz̄azaz̄bdzb

(z̄czc)2
, (B.11)

which is the standard form of the Fubini-Study metric. Inhomogeneous coordinates wi are

related to za as follows

wi =
zi

z4
, (B.12)

and the metric (B.11) obviously reduces to (B.6) if z4 = 1.

It is clear from (B.6) that there are 3 commuting isometry directions corresponding to

multiplying wi by a phase wi → eiαwi.
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